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The investigation of the stability problem of a plasma string supported 
by a magnetic field when finite conductivity is taken into account has 
been considered in [l-3]. In the case of an incompressible string of 
homogeneous conductivity, the regions of instability were established 
for certain types of oscillations [1,21. 

The stability of a pinch with surface currents in a magnetic layer of 
large, but finite plasma conductivity has been studied by Jukes [31. In 
this work all the calculations uere done under the assumption that the 
radial component of a displacement gr from the position of equilibrium 
within the confines of the magnetic layer remains constant. Accordingly, 
a solution is found of an incomplete system of equations of mogneto- 
hydrodynamics, However, whereas in the case of an ideally conducting 
medium the assumption of the stability of tr is a conseguence of the re- 
sulting equations [4l, this assumption turns out to be incorrect in the 
general case, as will be seen from the solutions given below. Therefore, 
the results of the work by Jukes should be considered as incorrect. 

Let us investigate the stability of a plasma string in the form of a 
hollow cylinder under the assumption that the conductivity o Is a 
significant parameter of the problem. No other limitations on the form 
of function o(r) are Imposed. 

The formulation of the stabillt3 problem for a pipe-like string of 
finite conductivltr in the caee of an incompressible medium has been 
treated in [4l; we shall derive the equatione with coneideratlon of the 
compressibility of the medium (Section 1); Se&Ions 2 to 4 deal with the 
stabllitr of an Incompressible hollow cylinder; Sections 5 and 6 are 
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devoted to a study of a solid incompressible cylinder and of a pipe- 

like string with cousideration of the compressibility of the medium. 

The solutions obtained pertain to unstable oscillations with purely 

exponential dependence on time. These instabilities are derived from 

discontinuities of the spatial steady-state distribution of the current 

density. 

1. Basic equations. Consider a steady state plasma layer occypy- 

ing the space between two coaxial cylinders with radii r1 and r2. ‘lhe 

pressure, density and conductivity of the layer are p(r), p(r) and a(r). 

Let us represent the azimuthal and the axial components of the magnetic 

in the form 

H,= H,,?, Hz = H& (r), g (r.0) = 1, HII = (H&,.“#O (1.1) 

where r. is some intermediate radius of the layer. 

Let it be assumed that the plasma layer is surrounded by ideally con- 

ducting cylinders. ‘lhe inner cylinder has a radius alrl and the outer 

a radius a2r2. In the non-conducting layer a1 r1 < r < r1 the pressure 

and density are constant and equal to p1 and xlpl, respectively. The 

corresponding quantities for the layer r2 \<r <azr2 have the subscript 

2. A small disturbance is imposed upon the given equilibrium distribu- 

tion, defined by the function exp i(ot + mq + kz). As in [4], assume 

that m >O and k 90. As the resulting equations of magnetohydrodynamics 

are linearized they become* 

p$=-V&HxrotH, s+divpv=O 

aH 
-=rrot(v x H)-_rot($rotH), at divH=O 

(4.2) 

$ (PP-‘) = 0, T = const 

we obtain 

% 5 = - VQ + isH' - 2i,gH,’ + {i, (rg’ + 2g) + i,r,h’) H,’ (l-3) 

l Strictly speaking, instead of the isentropic equations of motion we 

should write the equations of energy transfer, in which the Joule 

losses and the heat conductivity are taken into account. However, in 

the case under consideration of a well conductive medium, the con- 

tribution of Joule losses leads to insignificant corrections. The 

isothermal condition may be obtained, if we take y = 1 and if we 

assume that in the steady condition (r)/p (r) = const. 
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H’ = F t - (j,rg’+ i;r&‘) % f- Q$ V2H’+ $ i, x rot H’ 
I 

-Hdivt (1.4) 

p’ = - q-p div 5 - p’& p’ = - div pi (4 -5) 

Q = $41rp’+ H.H’) (1 Ai) 

k+f, R = ioro ‘C/W 
1/ 

- 
$ _ rfllHoI 4Jt 

IHot ’ CZ P’ 
s = mg _t kroh 

where ir i, and iz are unit vectors, the starred quantities are the 
excited quantities and the primes denote differentiation with respect 
to r. 

Expressing c in terms of H* and div < fran (1.4) and including p* by 
the use of (1.51, we convert the system (1.3) to (1.6) into the form 

Vq=i,p,+i,iP,+i,~+~1Hdiv~ (1.7) 

Q = rgH,* + r,hH,* - ‘z{ rp div { - $6 (H,’ - $ V?'H*)} (1.8) 
0 

div H* = 0 

P, = i(s+$)H,*- 2gHq*--~V,zH* 

P, = (s+ $) H,* - [ (I+ s) ‘6’ $ 2g] iH,* - 

- -2- ‘;‘f (Vq2H* - $ rot _. H’ 

P, = (s + $) krH,* - ikrgh’ (1 + $) H,* - 

-‘s (T72Hz* + $ rot., H+ - 

where VT% = iq V 21p and so on; also 

z Er = - ; (H,* - -$ V,sH*) 

- 

(1 .Y) 

(l.lO,I 

- T Vr2H*) (1.11) 

yV,“H*) (1.12) 

(1.13) 

To determine the boundary conditions the regions outside the conduct- 
ing layer must be investigated. Calculations, analogous to those pre- 
sented in [41, lead to the relations 

i mQ+ 
CiQ’f&lE, 

rJ+ -$H'*}r=rj = 0 (1.14) 

H; - $ H; + (rg’ + 2g) %}r=f = 0 (1.15) 
j 
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(1.16) 

where. 

T(*) -_ Xr [I,’ (xr) K,,’ (xv) - K,’ (xr) I,’ (xv)] 

n1 11, (xr) h’,,’ (x*r) - K,, (xr) I,,’ (x3r)) 

x=1/hLw2p/yp, (X)r=rj = Xj (31)r=rj = U-j (i = 1,x) 

T is determined by the same equation as T”’ through substitution of K 

for K. 

The investigation of stability with respect to a given type of dis- 

turbances now consists in finding R which must satisfy the system (1.7) 

to (1.9) under the conditions (1.14) to (1.16). For unstable oscilla- 

tions Re R > 0. 

2. Asymptotic solutions in the case of an incompressible 

medium. In the case of incompressibility div { = 0, the quantity y 

div c is finite and the equation (1.8) may be disregarded. A solution 

is desired of the system (1.7) and (1.9) for the case of large 4, under 

the assumptions that the inside radius of the conducting layer is not 

small, that the function s(r) is not near zero and that the equilibrium 

distributions are smooth (g’ is of the order g/r, etc.). 

Applying operator rot to equation (1.7), we obtain three equations, 

two of which are independent. As a result we arrive at the following 

system of three equations for the components of H*: 

arP2 P,--QfPf==O, -- 
ar 

mP,=O 

. &l-I,* 
L----- = mH,* $ lirH,* 

ar 

(2.1) 

(2.2) 

The quantity l/q2 in equation (2.11 appears as a small parameter for 

the higher derivative. Consider solutions, for which af& >> l/r. If 

only the major terms are retained, it can be shown that the components 
of R* are proportional to exp hf, where 

(2.3) 

Assume, that derivative f’ is of the order of l/r,, and is not equal 

to zero. ‘Ihen A = const will be a significant parameter. It may be 

assumed that 
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Ye shall look for solutions of (2.1) in the form 

Hq+= hf’ [Y -j- A-’ Y(l) + 0 (P)] eA’ 

Hz*= T [Z + 1L--l z(l) + 0 (h-y J eX’ 
(2.4, 

where Y, Y(l), 2, . . . are functions of r, such that Y’ is of the order 
of Y/r, etc. 

From equations (2.2), (1.13) and (1.7) we find 

fi,.* :-- - y[Y _t Z + +- (Y”’ + 2”‘) - & (I-’ $ 2’) $ 0 (K2)] eki (2.5) 

HOE., 
- = G (Y + 2 + IL-‘P + 0 (A-*)] ehf 

r0 
(2.6) 

Q -- - 2g [Y + 0 (IF’)] P (2.7) 

I?(‘) = Y(l) + z(l) + +( I$ z;)(Yp + 2’) + --$( I$ $)[Y - 2 + $ (Y + Z)] 

Substituting (2.4) and (2.5) into the system (2.1) and equating the 
main terms to zero, we obtain (2.3). In the next approximation in terms 
of A-’ we have 

Two linearly independent solutions of this system are obtained in the 
form 

Y1 = r,,X cos kti, Y2 = -$Xsinke, 2, = ksXsin k6 (2.9) 

3 -- 

Z, = rX cos kO x = -& (9 + S-P) 4 , c = const 

r-1 

Continuing the separation expressions for Y,,’ ‘) and Z,,(l), n = 1, 2 
can also be established. 

Since the sign of A in equation (2.3) is arbitrary, 
solutions of the system (2.1) to (2.2) may be derived. 

four independent 
ASSUme 



Highly conducting plasma string in a magnetic field 65 

then two solutions are defined by the equations (2.41, (2.5) after sub- 

stitution of (2.9) therein, and the other two will be obtained by chang- 

ing the sign in front of A. For example, the solutions for 
% 

* are 

.!I hf'(Y, t . ..)efhf. n = 1, 2. 

'Ihe derived equations are valid under the conditions 

A>17 h>(rnZ + I&2), Ihrf'I>l, (JJ,lrz)>1 

h >I ra’/a 1, h > ( q!‘/s 1 I h>)l rh’/s[ 

Two last conditions exclude from consideration the case s = 0. 

3. Dispersion relation. A complete system of solutions of the 
equations (2.11, (2.2) consists of six particular solutions. 'Ihe last 

two solutions may be expected in the form of an expansion in terms of 

l/AZ, assuming that the first terms of the series will be solutions to 

the approximation of ideal conductivity. Also the parameter A must 

satisfy the condition r12h2 >> r2 '. We assume such solutions to be known 

and denote the left-hand sides of the equations (1.14) to (1.16), after 

substitution of the nth solution (n = 1, 21, by Unj, Vnj, Wnj, where 

Unj = Un(sj) etc., respectively. 

Upon substitution of the complete solution into the conditions (1.14) 

to (1.16), we obtain 

A,U,j + AzU2j + (B,D,j + BJl2j) eafj + (B&,j- + B,D,j-) emxfj = 0 

A,V,j + A,V,j + (B,E,j + B,E,j) ehtj + (BsE,j- + BsE,j-) emhfj = 0 (3.1) 

A,kV,j + A,Wzj + (B,F,j + B,F,j) ehfj + (BsFlj- + B,F,j-j e+j = 0 

where j = 1, 2 

D,j = - 2mgjY,j - msj “T’_ ‘j) (Ynj + Znj) + 0 (h-l) 
3 

Enj = hfj’ (Ynj + k Y,/‘)) + [ sz (rjgj’ + 2gj) - (3.2) 
3 

- $ 
3 

(Ynj + Znj + R-lR,f”) + 0 (hw2) 

Fnj= kfj’(Znj+;Z.;“;+ (~-~)(Y,j+Z,j+tB,:1’)+O(h-2) 
3 

Ynj = YTI (rj), 4 = (2 ),-, (A,, BP= con&) 

Equations for D‘, E- and F- are obtained from the equations for D, E 
and F by reversing the sign in front of A. The factor in front of I-I-' 
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has been computed with consideration of the correction terms, because 

the order of Q is not known beforehand (it will be shown below that for 

s * 1 the parameters h and QB2 may be of the same order). 

By equating the determinant of the system (3.1) to zero, a solution 

for Q is obtained. If the terms with the factor exp [-A(f2 -f,)] are 

disregarded, we have 

Ull CiZl 0 0 a,- D21- 

Ul2 TJ2z Di2 022 0 0 

1.11 VZl 0 Cl E&- &- 

v12 Yet P ‘12 F -22 0 0 

WI1 TV21 0 0 FII- FZI- 

WI2 Wzz Fp2 Fzz 0 0 

or in another form 

zzz 0 

G&2 (U,,U,, - Uz,Ut,) - G (&,F12 -- 42F22) (unV22 - u21V12) + 

4- Gx (~224, - G,&,) (~~~~2~ - U2~~~2) - C2 (&-~21_- - D21-F11-) x 

x (U,,V,, - U,,V,,) + G, (h-E,,- - D21-&I-) (u22@‘,, - unni’2,) = 0 (3.3) 

where 

Cl = E,,-F21- - E21-Fll-, G, = EzzFlz - &Fzz 

and the neglected additives are A2 times smaller than the first term on 

the left-hand side of (3.3). 

'lhe expression for Gj may be written in the form 

In the equation (3.4) 

Nj = (Yjj -t-_ hwlYjj(l)) (Zfj + h-%Z[j(l)) - (Y[j + h_lY Ii’)) (Zjj + hwlZjj(‘)) 
z =_j+f- jtj-;l 

It is seen easily that upon dividing by the factor N,N,, which 

differs from zero, the unknown functions Y(l) and Z(l) vanish from equa- 

tion (3.3). The solution obtained re 

expansion into series in terms of A- 
P 
resents the first two terms of the 
of an exact dispersion relation. 

4. Investigation of the dispersion relation. In first 

approximation the roots of equation (3.3) are determined by equating the 
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first term to zero. In addition to solutions similar to those which are 
obtained in the approximation of ideal conductivity, when 

lJllU22 - LJJJ,, = 0 

we obtain also solutions from Gj = 0 or 

(; = 1, 2) 

(4.1) 

(4.2) 

‘lhe complex roots Q of the last expression, taking into account 
(2.10) correspond to attenuated oscillations. In case of unstable solu- 
tions the parameter Q is real and positive. It is defined by the equa- 
tions 

(4.3) 

(4.4) 

where 

is a quantity related to the steady state current density j. It is pro- 
portional to the scalar product of a gradient of some perturbed quantity 
(e.g. V$*) on ir x j. 

Equations (4.3) and (4.4) define the frequencies of unstable oscilla- 
tions with purely exponential dependence on time. For a given instant 
during the development of the instability 

(4.5) 

we may find from (4.3) and (4.4) the values of q, i.e. the conduct- 
ivities, provided, of course, the conditions hfj’ >> 1 and those indi- 
cated in (4.3) and (4.4) are fulfilled. 

For a more detailed study of the instabilities obtained it is neces- 
sary to carry out an analysis to the first and second approximations. 
We shall confine ourselves to the case of long wave disturbances 
(k2r2 << l), when h’ is of the order of k. If we neglect the quantities 
of the order k2r2 then in 
F - = 0 and F,, Lo. As 

(3.3) we must assume that Z, = 0, Wnj = 0, 
a result equation (3.3) is greatly simplified. 

ll?s approximation corresponds to neglecting the small term ik/fz*, in 

the equation div H+ = 0. In this case we can disregard the zth components 
of (1.3) and (1.4) together with the condition (1.16). 
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Jf we assume that III = 1, we can make use of the solution presented 

in [4, Section 31 for the calculation of the quantity of II and V . . 
In the case of a solid string of homogeneous density for ii = 0, t = -1, 
in the absence of currents in the region F < F,, the dispersion relation 

(3.3) transforms into the form 

-7 ;: { (Q2 + 2S2 -- 2S&‘) [hr/’ (hF/’ + “p + 1) $- 
(4.6) 

+ @&2sg (1 4. _$ _- zq] - 
S2 + 522 

2hrJ’ (g -s) (2g - S)}rTT, ‘:= 0 

For Cl = 0 the roots are similar to those that are defined by equa- 
tion (4.3). We shall investigate now the roots (4.6), which are related 

to the presence of the outside boundary. After 

simple transformations we obtain (for r,, = r2, 

z 
-/,O,lZ 3 

-I g2 = 1) 

1 

There are real as well as complex roots Q. For 

example, if s2 >> 1, the complex roots are such 

that Q2 + 2s2 - 2s is not large (with the excep- 

tion of the case of small Q2, in which instance equation (4.2) is valid 

and Be Q < 0). With regard to the limitation of the argument of the root 

in (2.10), it is easily shown, that to these roots there correspond 

oscillations (Re Q < O), vanishing with time. 

Consider now the real positive roots Q of equation (4.7). We shall 

establish the functional dependence of s2 upon l/q, for a fixed Q and 

upon the other parameters of the problem. In studying the influence of 

the magnitude of a discontinuity of the current density on the boundary, 
we introduce the assumption quite unessential for the general character 

of the curves, that the three last terms in the square bracket of (4.7) 

vanish. For the case of Q = 0.2 the curves are represented in the figure. 

The numbers denote values of the parameter r2g2’ + 2, proportional to 

the tth component of the current density on the outside boundary layer. 

In the case q = a~ the entire region of instability corresponds to 

the sheet 0 < .s2 < 1. For the chosen value Q = 0.2 there are two points 

S2 = 0.98 and s2 = 0.02. Olrves that originate fraa the first point are 

practically independent of the magnitude of r2g2’ + 2 and run approxi- 
mately parallel to the x-axis. ‘lbe curves originating at the point s2 = 

0.02 are of a different character. For r2g2’ > - 2 they extend into the 
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region of negative s2 and they have a vertical asymptote for the value 

q2, as obtained from formula (4.4); for r2g2 ’ < - 2 the curves extend 

into the region of positive s2, and the asymptote again is given by 

equation (4.4). Ihe curves, however, are discontinuous. For r2g2 ‘ = - 2, 

when the longitudinal current density does not have a discontinuity on 

the boundary, the distribution of the regions of the instability depends 

weakly upon the conductivity of the medium. It is to be noted, however, 

that as the current density is decreased to zero the conductivity also 

falls abruptly, therefore, the formulas derived above for the case of 

small magnitudes r2g2’ + 2 may turn out to be inapplicable. 

Consequently unstable oscillations, corresponding to equations (4.3) 

and (4.4), arise from the presence of the discontinuities in the spatial 

current density distribution. For the type of oscillations chosen the 

instability may not occur even in the case of an abrupt variation of the 

current j on the boundary, if in this region (i, x j)-mq* = 0. For 

example, for n = 0 it is sufficient that dHZ/dr be a continuous function 

at the boundary. 

5. On the stability of a solid string. 'Ihe method of asymp- 

totic solutions of equations of the magnetohydrodynamics derived above 

is inapplicable in the case of a solid well-conducting cylinder because 

of the presence of the singularity at r = 0. It is possible get rid of 

this limitation by a slight variation in the method. 

In the region of small r function H?(r) usually behaves nearly 

linearly and Hz(r) is approximately constant. Consequently, here a 

general solution is valid, known El,21 for the case of q = const, h = 
const, s = const 

3 

H* = 2 (0 L, f iypi, x V IT.,, - ikyp2L,i,j 
p=1 

(5.1) 

where 

--- ?P 

L, = C,Jm (kr 1/ 1 - y,2) + DJ,, (kr 1/ 1 - yp2) (3.2) 

where Cp and Dp are constants and y, are the solutions of equation 

(3.3) 

For q >> 1 there are two roots y,(p = 1, 2), for which in the main 

approximation 
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We may look for two solutions of (2.1) and (2.2) bounded at zero In 

the form analogous to (2.4), but with substitution of exp hf by Bessel 
functions chosen so that for small r they will transform into the two 

solutions (p = 1, 2) indicated above. ‘lhe conditions for r are fulfilled 
automatically, therefore, it is sufficient to satisfy the system (2.1) 

to (2.2) to the corresponding approximation in terms of small parameter 

A”. For example, for the two components H?’ and Hz* two solutions are 
written in the form 

H,* = hF’ Jm ((X + . . .) I,’ (W) -+ h ‘Y’O1’I,(hF) + . . .) 
H,*=TiihF’1/F((X+.. .) I,(hF) -1 h-LZ(O1)/,,,t (At;) -+ . . .} i*-).d) 

where 

yCO1) , pm _ ,y 

It is easily shown, that equation (4.4) which defines the instability 

remains valid in the case of a solid twist. 

Note that from the expressions (5.4) there follows that the expansion 

in the form (2.4) is valid for the condition fhF(r,)l >> 1. 

6. ‘Ihe case of a compressible medium. Let us investigate the 

stability of a compressible pipe-like string under the assumption, that 

p(r) and p(r) nowhere become zero. All the other starting conditions are 

the same as in Section 2. 

We shall look for the solution of (1.7) to (1.9) in the form of (2.4) 

to (2.5), assuming that Q2 will be a small paraneter of the order of 

A-‘. Equations (2.3), (2.6) and (2.7) remain valid and we obtain for Y 

and Z the system 

Expressions (2. lo), (3.1) to (3.3) retain their form for the corn- 
pressible string (it is only necessary that in the equation we sub&- 
ture for Dnj the term (l/Tj - xj/7’j*)) in place of (1 - xi)/Tj). Ihe 
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right-hand side of (3.4) is altered somewhat, but the proportionality 
between Cj and Nj remains. In the first approximation the coefficients 
Nj are equal up to a constant to the determinant of the fundamental 
system of solutions (6. l), taken for r = rj, therefore (3.3) may be 
divided by N,N,. The equation obtained in this manner represents two 
first terms of the expansion of the exact dispersion relation in terms 
of the order of A-‘. 

In first approximation the roots of the dispersion relation are de- 
termined either by equation (4.1)) or by the expressions (4.2) where 

R. = 52, J (p .lp,, is substituted in place of 9. To investigate (4.1) 
mist find the solutions of (1.7) to (1.9) using the approximation of 

we 

ideal conductivity. From (4.2) we obtain 

Qj = (_ I)+-I 1 rns (rS’+ ZfnRi 
d-2 I/n (9 -,- W) ) r=rj 

(i=i,2) (6.2j 

so that the build-up time of the instability motions, arising from the 
presence of the discontinuities of the spatial current density, does not 
depend on the assumption of incompressibility of the medium. In the case 
of the solution of (6.2) the condition of smallness of Q* is satisfied. 
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